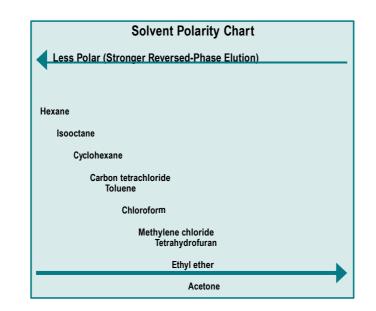
SPE Method Development

SPE method development typically contains four steps:

Step 1: Condition

The conditioning step is composed of two substeps; the first activates the sorbent ligands, the second equilibrates the sorbent bed.

Step 2: Load


In the load step, sample is applied to the SPE device. Matrix and flow rate are optimized to quantitatively retain target analytes.

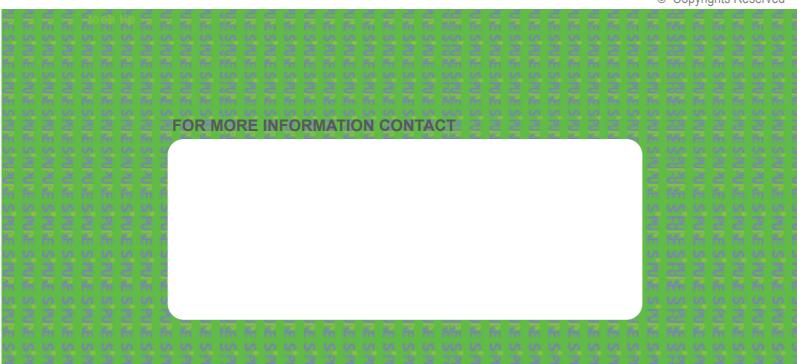
Step 3: Wash

In the wash step, choose a solvent that elutes impurities but retains target analytes. Often the second conditioning solvent is a suitable wash solvent.

Step 4: Elute

The elution step ideally removes all target analytes with minimal solvent to maximize sensitivity. Sometimes requires a combination of solvents to break both the primary and secondary interactions.

		General Method De			
		Step 1—Condition ~ 4 bed volumes	Step 2—Load	Step 3—Wash ~ 6 bed volumes	Step 4—Elute ~ 3 bed volumes
-	Reversed-Phase Extraction Procedure Mechanism: Bind moderately polar to non-polar compounds from a polar sample matrix.	Methanol followed by water	Process sample at a flow rate of 1–5mL/min	Water or water:methanol (95:5)	Methanol or acetonitrile. May need to add strong acid or base to organic solvent to break secondary interactions.
	Normal Phase ExtractionProcedure Mechanism: Bind polar compounds from a non-polar sample matrix.	IPAfollowed by hexane	Process sample at a flow rate of 1–5mL/min	Hexane or hexane:IPA (98:2)	IPA, ethyl acetate, acetone, or hexane:IPA(50:50)
	Ion-Exchange Extraction Procedure Mechanism: Bind charged (negative/anionic or positive/cationic) compounds.	Methanol:water (50:50) followedby low ionic strength (0.1M) buffer	Apply slowly: less than or equal to 1mL/min ion exchange kinetics are slower than reversed-	Methanol:low ionic strength (0.1M) buffer (10:90)	High ionic strength (0.5M–1.0M) buffer or modify pH such that the analyte is uncharged. May need to add organic to break hydrophobic interactions.


tech tips

o calculate sorbent bed volume, use 150µL for every 100mg of sorbent.

Retention capacity describes the total amount that an SPE sorbent will bind. This includes all compounds retained—analytes of interest as well as the contaminants.

The minimum elution volume recommended in the bed size chart above will offer best sensitivity, but more solvent may be required depending on the application

© Copyrights Reserved

Solid Phase Extraction Essentials

www.sstarpure.com

SPE Introduction

Incorporating the highest grade of silica in the industry with over a quarter of a century's experience in making SPEs. S*Pure brings to you a highly comprehensive range of silica-based SPE products. This includes MaxiClean™, Ultra-Clean™, Extract-Clean™, Vydac®; brands synonymous with quality, reproducibility and highest recoveries.

Working with Experts in Media Production

Using a consistent and pure silica base that employs tightly controlled bonding techniques, insures predictable analyte-sorbent interactions, critical in ensuring a bonded phase with high and reproducible recoveries.

Highest Quality Control

Every part of our manufacturing process is carefully monitored. From managing our raw materials to stringent quality controls in the final product, we perform multiple quality tests, and provide a comprehensive quality assurance certificate.

Extract-Clean™ Columns

Format: SPE Columns

Sizes: 1.5, 4, 8, 15, 25, 75mL (the entire tube volume)
Summary: In production for over 25 years, with proven consistency, this is our most comprehensive SPE product line. It includes 30 media types in over 10 different bed weights. And with a complete offering of reversed normal, and specialty medias exhibiting unique retention properties, you are sure to find the packing that delivers a cleaner, more concentrated sample

Maxi-Clean™ Cartridges

Format: SPE Cartridges

Sizes: 300, 600, 900mg (media amount, not device volume) Summary: The Maxi-Clean™ line is offered in many of the same media as the Extract-Clean™ line, but slightly paired down, with over 20 chemistries available. This lure hub cartridge device is not as prevalent in the SPE industry, and while manual processing is most common, this format offers a number of other interesting processing options, including multimedia extractions.

Ultra-Clean™ Columns

Format: SPE Columns

Sizes: 4, 8mL (the entire tube volume)

Summary: Choose this ultra-low extractable version for very sensitive applications. Nine selected media are packed into highly inert fluorinated polypropylene tubes with PTFE frits. Less expensive than glass extraction devices, this durable format offers comparable inertness without the added concern of being easily broken.

Vydac® Columns

Format: SPE Columns

Sizes: 1, 3mL (volume above the packing)

Summary: Ideal for extraction, concentration and cleanup of biological samples. This 300Å silica-based media has the same properties as the industry-leading Vydac® TP HPLC packing. Offered in C18 and C4, use for a variety of protein and peptide applications

Extract-CleanTM **SPE Columns**

- · Open top tubes with male luer bottom
- Process multiple samples with vacuum manifold or automated SPE instruments
- Process individual samples manually with use of adapter and syringe

Device Specifications Device **Housing Frit Material** Extract-Clean™ Columns Polypropylene 20µm Polyethylene Ultra-Clean™ Columns **Treated** Polypropylene 10µm PTFE Vydac[®] Columns Polypropylene Glass Fiber Filter Paper with Polyethylene Mesh Support Maxi-Clean[™] Cartridges Polypropylene 20µm Polyethylene

eversed-P	hases (Non	-Polar) Sorbe	ent Spec	ifications					Extract-Clean™	an™	ML 1M
			%	End-	Average Particle	Pore			tract-C	Ultra-Clean™	-
acking revail™ C18		Base Silica	Carbon 11.0%	Yes	Size 50µm	Size 60Å	Features 100% water wettable	Benefits Hydrophilic/hydrophobic retention. Phase remains active even when completely dry. Can omit preconditioning step.	X	ū	- Maria
tandard C18 igh-Flow C18		Silica Silica	6.0%	Yes Yes	50μm 100μm	60Å 60Å	Low carbon load C18 Large particle	General purpose phase. Less flow resistance for faster flow	X	х	- ;
igh-Capac	ity C18	Silica	17.0%	Yes	50µm	60Å	High carbon load	rates of large volume sample. Maximum capacity phase.	Х		
arge Pore	C18	Silica	14.0%	Yes	50µm	150Å	Larger than average pore size	Ideal for compounds >1500MW.	х		2
ctyl (C8)		Silica	4.5%	Yes	50µm	60Å	Less hydrophobic than C1	Less retention of highly hydrophobic compounds. Use when C18 is too retentive.	X	х	-3
thyl (C2)		Silica	5.5%	Yes	50µm	60Å	Short chain functional gro is less hydrophobic than 0				1.3
henyl (PH)		Silica	3.8%	Yes	50µm	60Å	Aromatic structure	Highly selective for aromatic compounds.	Х		- ;
ormal-Pha	ases (Polar)	Sorbent Spe	cificatio	ns					ž		
									Extract-Clean™	Ultra-Clean™	MICHOC
			%	End-	Average Particle	Pore			tract-	ra-Cl	2
lica (SI)		Base Silica	Carbon	capped	Size 50µm	Size 60Å	Features Highly polar surface	Most common polar phase.	×	ž	M
	LAHL		5.00/							^	ľ
minopropyl (NH ₂)		Silica	5.0%	No	50μm	60Å	Polar phase with slight ani exchange properties	with analyses containing hydroxyl functional groups.	х)
yanopropy	rl (CN)	Silica	6.0%	Yes	50µm	60Å	Unique selectivity	Can be used in normal-phase or reversed-phase modes.	х	Х)
iol (20H)		Silica	4.0%	No	50µm	60Å	Polar surface with minor hydrophobic retention	Wets easily and offers more reproducibility.	х)
orisil® (FL)		Magnesium Silicate	-	-	75 – 150µm	60Å	Highly polar surface	Referenced in many EPA methods. Ideally suited for pesticides and metals.	х	Х)
orisil®PR	(FL-PR)	Magnesium Silicate	-	-	75 – 150µm	60Å	Specifically tested for chlorinated pesticides	Ensures most inert batches suitable for highly active compounds.	х	х)
lumina Aci	dic (AL-A)	Aluminum Oxide	_	_	130µm	100Å	Alumina washed with acid surface		х)
lumina Ba	sic (AL-B)	Aluminum Oxide	-	_	130µm	100Å	Alumina washed with base surface	e Increase capacity for basic	х)
lumina Ne	utral (AL-N)	Aluminum	_	_	130µm	100Å	Alumina washed with neut		х)
pecialty P	ackings Spe	Oxide ecifications					surface	compounds and neutral hydroxyls.			
			%	End-	Average Particle	Pore			Extract-Clean™	Ultra-Clean™	
vB		Base 100% DVB	Carbon	capped —	Size 40µm	Size —	Features 100% DVB	Benefits Greater capacity than C18 for	Х	_	-
								general SPE. Also free vinyl surface groups make a suitable solid-phase synthesis support.			
arbograph		Graphitized Carbon	_	_	38 – 125μm	-	Graphitized Carbon	Retains polar organics in aqueous matrices. Ideally suited for acid, base-neutral extraction of pesticides	Х	Х	
rug-Clean	SB-C	Silica	_	_	50µm	60Å	Silica-based mixed mode	and herbicides. Ideal for drugs of abuse.	X		
rug-Clean SB-A		Silica	_	_	50µm	60Å	C8/cation exchange Silica-based mixed mode	Ideal for drugs of abuse.	х		H
rug-Clean PB		Polymer	_	_	30µm	_	C8/anion exchange Polymer-based mixed mo	de pH stable with no conditioning	X		
							C8/cation exchange	required. Extract acidic, neutral and basic drugs of abuse from single column.			
eneral lon	-Exchange \$	Sorbent Spec	cification	ns .					MT		
									Extract-Clean™	Ultra-Clean™	-
cking	Base		Particle Size	Functiona Group Fx		nange acity	Retains	Applications	Extra	Ultra	
CX Styrene- DVB		Hydrogen	50µm	Benzenepa Sulfonic Acid	paci 2 y.0r	neq/mL	Cations, (+) charged compounds	Remove/concentrate basic compounds.		х	
ΑX	Styrene- DVB		50µm	Tetramet Ammonii		neq/mL	Anions, (–) charged compounds	Remove/concentrate acidic compounds.	х	х	
n Chroma	tography So	orbent Specif	fications						M.		Ī
									Extract-Clean™	an TM	
			Particle	Molecu Exclusi		nange			tract-	Ultra-Clean™	
cking	Base	Counter lor	n Size	Limit 1000	Cap	acity		Applications	_	ž	ļ
-OH	Styrene- DVB	Hydroxide	50µm	Dalton		neq/mL		Exchanges anions for hydroxide. May b used to remove or concentrate anions from sample and to increase pH of acid samples. Removes cations that form			
-H	Styrene-	Hydronium	1 50µm	1000	2.0r	neg/mL		insoluble hydroxide salts. Exchanges cations for H*. May be	х	L	ļ
-11	DVB	Trydroman	Гоории	Dalton		пефпп		used to remove or concentrate cations from sample and to reduce pH of basic			
-Ag	Styrene-	Silver	50µm	1000		neq/mL	Chloride Iodide Bromide	samples. Removes excess halides through	х	l	t
-Ba Styrene-		Barium	50µm	Dalton:	2.0r	neq/mL	Sulfate	formation of Ag-halide salts. Removes excess sulfate through	х	H	t
-Na Styrene-		Sodium	50µm	Dalton:		neq/mL		formation of BaSO. Exchanges cations for Na*. May be used	х	\vdash	ŀ
DVB				Dalton				to remove or retain cations from sample without changing the pH of the sample.			
-Chelate Styrene- DVB		Sodium	50μm	1000 Dalton		neq/mL	Polyvalent metal ions	Exchanges transition metals and divaler cations for Na*. May be used to remove or retain divalent cations and transition metals from sample.			
-RP	Polystyrene	e —	550µm	1 —	-		Hydrophobic	Removes surfactants, organic acids, and other organic substances. Inorganic ions	х	İ	Ť
								pass through.			